

Equine Injury Database Update and Call for More Data

Dr. Tim Parkin

Senior Lecturer Equine Clinical Sciences University of Glasgow

How do we get more from the EID?

Tim.Parkin@Glasgow.ac.uk Tim.Parkin@EquineData-Analytics.co.uk @ThoroughbredHN

Outline

- Equine Injury Database (EID) since 2009
- Summary horse-level risk factors
- Testing the predictive ability of the models
- Evidence for the importance of non-fatal injury
- How could the reporting of non-fatal injuries be improved?

Annual fatality rates each Spring

- Within 72 hours of race
- Estimates by calendar year
- Point estimates and 95% confidence intervals
- By surface, age and distance

*96% of all starts in N. Am. # IF number of starts had remained constant

Summary

- Clear improvement on all surfaces since 2009
- Somethings are working well
- Still room for improvement
- Do not want to see the rate plateau
- What more can be done?

What has been done so far?

- National and track (state) Specific models
 - Track or state-specific models
 - Dependent on sufficient number of starts at these tracks to provide adequate statistical power
 - Now possible at very many tracks/states
- Models for specific causes of (fatal) injury
 - Fracture
 - Proximal sesamoid bone fracture
 - MCIII fracture
- Models that include information about training schedules

National and track-specific models

- >3.1 million starts by >150,000 horses
- 96% of all starts in North America (2009 to 2017)
- Some of the more common horse-level risk factors
 - Previous EID injuries
 - Appearance on a vet list
 - Time with same trainer

Previous injuries

- Note: Only EID reported injuries
 - Actual relationship could be much bigger
- For every extra previous EID reported injury the risk of (fatal) injury during racing increases by:
 - Fatal injury 61%
 - Fracture 35%
 - Proximal sesamoid bone fracture 43%
 - MCIII fracture 41%

Vet list

- For horses that have <u>ever</u> been on the vet list the risk of (fatal) injury during racing increases by:
 - Fatal injury 115%
 - Fracture 79%
 - Proximal sesamoid bone fracture Not sig.
 - MCIII fracture Not sig.

These two models include more workout risk factors, which may explain why being on the vet list was not in final models

Vet list – national model

- No difference if include when come off the vet list
- Risk does not return to 'base line' once been on the vet list

Vet list – track specific models

• Each track is different

Time with same trainer

- For every extra month spent with the same trainer the risk of (fatal) injury during racing <u>decreases</u> by:
 - Fatal injury 1%
 - Fracture 1%
 - Proximal sesamoid bone fracture 1%
 - MCIII fracture 2%

27%

If with trainer

for a year

13%

First start for new trainer ↑ 28% ↑ 9%

Likely at least in some part to be due to lack of familiarity with the new horse. Some of which will relate to the veterinary history.

Summary

- Clear evidence of importance previous injury/being on the vet list and racing for a new trainer
 - All increase the risk of (fatal) injury

• Knowledge of health records will improve models and predictive ability and therefore usefulness of models

Predictive ability of models ~ 65%

Area under the ROC curve

What does this mean?

• With two randomly selected starts (one which ends in fatal injury and one which does not) the model will correctly identify the start that ends in fatal injury 65% of the time.

Better than a coin toss, but not yet good enough to
 use in practice.

Variable predictive ability at different tracks

- AUC at different tracks:
- Range from 53% to 68%
 - Most individual track models are slightly less predictive
- A lot of 'local' factors that are simply missed in EID or not recorded at all
- Importance of 'local' knowledge and working with those on the ground at different tracks

Time to build track/state specific models

Why cannot we be more predictive?

- Frequency of the outcome we are trying to model
- Scope of the data
- NB amount of data is not an issue!

Why cannot we be more predictive?: Frequency of outcome

- Risk is approximately 0.18% of starts
- In 10,000 starts 18 fatal injuries & 9,982 starts not ending in fatal injury
- If you had to guess if a start was going to end in fatal injury you would always say <u>NO</u>
 - And be correct 99.82% of the time!
- Model works in the same way
- How make it a little easier for us
 - Increase the frequency of the outcome we decide to model:
 - Lifetime risk, Season risk, Meet risk
 - Model injury rather than fatal injury

Why cannot we be more predictive?: Scope of data

Race distance ~ 4.2%

Race intensity ~ 6.3%

Same trainer ~ 5.3%

Age at first start ~ 8.4%

Horse gender ~ 4.2%

Surface condition ~ 6.3%

Where are the remaining risk factors?

Variance in the likelihood of a start ending in fatal injury

□ Jockey (total)

■? (total)

What happens to horses with racing non-fatal injury?

Of 3,107,487 race starts: 12,574 ended in a 'first occurrence' non-fatal injury (0.4%) Compared with the three races prior to injury, the average purse for the three races post injury dropped by 20%: \$30k to \$24k

5,844 horses made at least one further start (46%)

Months until fatal injury

Track by track variation in reporting of non-fatal injuries How identify incomplete reporting? Ratio of non-fatal to fatal injuries

- Ratio of non-fatal to fatal injuries (national average 2.2 to 1)
 - At some tracks in some years 7 to 1
 - As low as 1.5 to 1 at same track in different year
 - Some tracks consistently closer to 1 to 1

Summary

- Evidence for importance of non-fatal injuries
 - Risk factors
 - Previous injury, vet list, time with same trainer
 - What are we missing?
 - % of unexplained variance to with the horse
 - Impact of non-fatal injuries on future career
 - >50% never race again, risk of fatal (non-fatal) injury & economic impact
- <u>IF</u> we had more accurate indicator of horses with previous injury would likely make very significant difference to the models and ability to predict injury

How do we encourage better injury reporting?

- Likely that 1000's of non-fatal injuries go unreported
- Not clear that reporting is improving across all tracks
 - Certainly less good in recent years at some tracks
- Equally (probably more) important is reporting on non-fatal injuries in training
 - Most studies suggest at least as many injuries in training as in racing

How do we encourage better injury reporting?

- The challenge
- Who should be responsible for ensuring reporting?
- How to incentivise reporting?
- How to ensure accurate reporting?
- Consistent reporting:
 - Across different tracks?
 - At same track by different people?
- Share good practice and make it easy for those who currently find it difficult

Acknowledgements

- Grayson Jockey Club Research Foundation
- US Jockey Club
 - Matt Iuliano
 - Kristin Werner Leshney
- University of Glasgow
 - Stamatis Georgopoulos